
GPU Assignment
Ray Tracing on GPU with BVH-based Packet Traversal

Natálie Kaslová1

Department of Computer Graphics and Interaction,
Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract

Implement a ray tracer with bounding volume hierarchies (BVH) that uses a cost model based
on surface area heuristics. Implement ray-packet traversal on the GPU, assuming that the
rays are formed by casting coherent primary rays.

Test the implementation on scenes consisting of triangles with varying numbers of objects.
Report the performance for primary rays and shadow rays (using point light source).

Keywords: ray tracing, BVH, bounding volume hierarchy, packet traversal, GPU, CUDA

1. Introduction

The data structure is built based on the paper ’Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies’ [1]. As described in the paper, it builds Bounding
Volume Hierarchies using a variant of the Surface Area Heuristic (SAH). The ray tracing
process originally employs ray packets. However, this part has been replaced with ray tracing
based on the paper ’Realtime Ray Tracing on GPU with BVH-based Packet Traversal’ [2].

The implementation also utilizes packet traversal, with the traversal algorithm accelerated
through GPU parallelization using a shared stack.

2. Algorithm Description

The top-down build of the BVH structure is performed on CPU with a cost model based
on SAH. It produces a structure of tree nodes requiring 32 bytes. This structure is then
traversed with ray packets.

2.1. BVH Construction

The construction of a BVH using the SAH begins by calculating the bounding box for the
entire set of objects to establish the root node. Each node in the hierarchy is evaluated to
determine whether it should be a leaf node or undergo further subdivision. If the number of
objects within a node falls below a predefined threshold, it is designated as a leaf node, and
no additional splitting occurs. Otherwise, the algorithm evaluates potential split candidates
(centroids of each object) along the three axes (x, y, and z) to identify an optimal division.

1B4M39GPU – Natálie Kaslová, winter semester 2024/25

January 8, 2025



For each axis, the algorithm assesses split planes to divide the objects into two groups—left
and right—based on a cost function derived from the SAH. This cost function considers
the surface areas of the bounding boxes for the left and right subtrees, the distribution of
objects between the groups, and a probability factor that reflects traversal efficiency. The
split yielding the lowest cost is selected, and the objects are partitioned accordingly to create
two child nodes.

This recursive process is applied to each child node until the object count within a node
is small enough to form a leaf node. The result is a BVH structure comprising a root node
and a hierarchy of recursively partitioned child nodes. Each node contains references to
its associated objects and their bounding boxes, ensuring efficient spatial organization for
subsequent operations.

2.2. Ray Tracing

The algorithm maps one thread to one ray and a block to a packet. The whole packet
traverse synchronously one node, therefore stack is places to shared memory.

If the node is a leaf, it intersects the rays in the packet with the contained geometry.
Each thread stores the distance to the nearest found intersection. If the processed node is
not a leaf, the algorithm loads its two children and intersects the packet with both of them
to determine the traversal order. Each ray determines which of the two nodes it intersects
and in which it wants to go first by comparing the signed entry distances of both children. If
an entry distance of a node is beyond the current nearest intersection, the ray considers the
node as not being intersected. The algorithm then makes a decision in which node to descend
with the packet first by taking the one that has more rays wanting to enter it. If at least one
ray wants to visit the other node then the address of this other node is pushed onto stack.
In case all rays do not want to visit both nodes or after the algorithm has processed a leaf,
the next node is taken from the top of the stack and its children are traversed. If the stack is
empty, the algorithm terminates. The decision, which node has more rays wanting to traverse
it first, is made using a parallel sum reduction. Each thread writes a 1 in an own location in
the shared memory if its ray wants to visit the right one first, and -1 otherwise. The packet
takes the left node if the sum is smaller than 1 and the right one otherwise.

2.3. Shadows

Additionally shadow rays were implemented. The point light is places above camera. The
parameter defined by user is used as multiplier of scene height, how much above camera posi-
tion should the light be placed. After traversal of primary rays, the shadow ray is initialized,
the stack is restarted and the packet traverse packet of shadow rays. After first intersection
is found, the thread sets flag and does not participate in showing interest to visiting other
nodes.

For better visualization of the shadows, the phong reflectance model was implemented.

3. Implementation details

The assignment was implemented in C++ and CUDA based on the framework nanogolem
0.97 [3]. A rought estimation of the time spent on the project is approximately 130 hours.

2



3.1. BVH Construction

I created my own struct to be used during the construction process, storing the object
centroid and bounding box. This resulted in a significant improvement in performance. An-
other optimization was to pre-order objects for each axis into separate vectors and, during
the creation of children, only divide these vectors—there was no need to sort them again.

The threshold for determining when a leaf is small enough to not be partitioned was set
to the average number of objects per leaf to be between 1 and 2, as these values provided the
best results.

3.2. CPU traversal

Since nanogolem framework [3] initially works with BVH, the original CPU-based basic
ray tracing was used and only modified by adding shadow processing.

3.3. GPU initialization

The GPU processing code required mirrored functions and structures corresponding to
the CPU definitions necessary for traversal.

Once the BVH construction was completed, an array of primitives and nodes was created
using data types designed for GPU traversal and copied into the GPU’s global memory. Sim-
ilarly, data defining the scene parameters—such as camera parameters, point light positions,
background color, shadow usage flags, and Phong model parameters—were also transferred
to the GPU. Finally, an output array for storing the computed color values was initialized.

The size of shared memory is 366 bytes composed by:

• Stack: size of BVH node * 50 (it is fixely defined size)

• Children pointers: size of BVH node * 2

• Reduction memory: warp width * warp height * size of int, used for parallel sum
reduction during the decision process to determine which child should be visited first

The first step in the algorithm requires all threads to decompose the shared stack, as it is
composed of different types.

3.4. GPU traversal

The project contains one kernel with the name SharedStackTraversal located in a file
traceGPU.cu.

The size of a ray packet is limited by the WARP size, which consists of 32 threads. My
initial idea was to use only 30 of them, creating a packet of 5x6 rays. Another option was a
packet of 8x4 rays, utilizing all 32 threads. I initially thought that using a smaller but more
compact packet would be beneficial, even though it involved using 2 fewer threads. However,
after conducting some tests, I concluded that the larger and narrower 8x4 packet performs
slightly better, as can be seen in figure 1. As mentioned in the paper about BVH construction
[1], during their implementation of ray-packet traversal, the best performance was achieved
with ray packets of 8x8 and 16x16 rays. Therefore, my concern about an inappropriate packet
shape turned out to be unfounded.

Since the image is ray traced in packets, they do not always fit perfectly within the image
resolution. Therefore, the image is aligned to fit the packet layout, and after traversal the
additional padding is ignored.

3



In the paper about GPU ray tracing [2], there is an error in the pseudocode. The selected
child to be entered next is replaced with the other child, resulting in incorect results.

Since the ordered traversal is determined by the number of threads attempting to en-
ter each child, the variables that determine the order can be excluded from the BVH node
definition. Despite this exclusion, the size of the node remains the same due to memory
alignment.

Figure 1: Measured kernel time with different packet size for different scenes.

3.5. Shadows

I faced the biggest difficulties during shadow implementation. My generated images had
shadow acne, that i could not get rid of. Moving illuminated point slightly above suface or
ignoring intersections lower than some epsilon value did not help. My resolution was to trace
the shadow ray from light to the illuminated point and ignoring intersections, that are beyond
said illuminated point.

Other problem was found during implementation shadows on GPU. Since almost all thread
initialize some data during traversal, each of them is required to enter the traversal algorithm,
even if their ray did not hit any object, thus not generated any shadow ray. It was not intuitive
for me and had to realize after some time spent on debugging.

4. Results

The results were measured on my personal laptop with the following parameters:

• Computer Model: HP Victus 16-r0026nt

• Processor: Intel Core i7-13700H (13th Gen)

• Frequencies: 3,7 GHz

• Memory: 16 GB DDR5 RAM

• Graphics Card: NVIDIA GeForce RTX 4060 Laptop GPU

4



• Cuda Capability: 8.9

• Operating system: Windows 11 Home (application was run on WSL)

Generated pictures with shadows for some scenes can be seen in Figure 3.
The correctness was checked with an online tool designed to compare differences between

pictures. The CPU-generated image and GPU-generated images differed by a maximum of
10 pixels, mostly occurring at the edges of the model. With a resolution of 800x800 pixels,
the resulting difference is less than 0.01%.

Statistics that were measured are described below:

T B time to build the data structure, in seconds

T CU time to initialize and copy GPU data, in seconds

N L number of leaves

D AVG average leaf depth

D MAX maximal leaf depth

O AVG average number of objects in leaf

T R average time per query for many queries, in microseconds

T F in seconds

PERF the performance in MRays/s (including CUDA initialization time)

N IT the average number of incidence operations per query with basic objects

N TR the average number of traversal steps through the data structures

N Q the count of queries used for a particular test case

The size of packets was set to 8x4, utilizing all 32 threads in WARP were used.
In terms of the time taken to build the data structure, the performance was particularly

poor for scene AsianDragon, which took almost one minute to build. As described above,
the split planes were placed on object centroids and the algorithm selected the one with the
lowest cost. This can be improved by uniformly sampling only few objects to test for split
plane placement. The parameters for this selection are described in detail in ’Realtime Ray
Tracing on GPU with BVH-based Packet Traversal paper’ [2].

Data structure statistics are showed in Table 1.

When comparing performace (for GPU includes time to initialize CUDA), displayed in
figure 2, the difference is significant, aproximatelly the ray tracing on GPU is one order of
magnitute faster than ray tracing on CPU. Except for the AsianDragon scene, again due to
the lange scene size and the high cost of data copying operations.

If we focus on the average traversal time per query (as shown in Table 2, excluding the
GPU data initialization time, the GPU traversal was one or two orders of magnitude faster
than CPU traversal.

5



Scene # of triangles N L D AVG D MAX O AVG T B

City 68 497 39 645 21.723 25 1.728 0.344
Sibenik 80 479 44 202 20.947 29 1.821 0.409
Armadillo 345 944 206 196 18.292 22 1.321 2.090
AsianDragon 7 219 045 190 147 23.462 29 1.016 59.504

Table 1: Number of leaves (N L), average leaf depth (D AVG), max leaf depth (D MAX), average number of
objects in leaf (O AVG), measured values are time to build data structure (T B [s]).

Figure 2: CPU and GPU performance in milion rays per second.

5. Conclusion

Ray tracing is significantly faster on GPU due to parallelization, but transferring data
between the CPU and GPU consumes a large portion of the processing time. A major
improvement to the current implementation would involve moving the BVH construction
process to the GPU. This change would eliminate the need for data transfers between the
CPU and GPU, potentially resulting in substantial speed-ups for the entire algorithm.

Additionally, another enhancement would be to modify the BVH construction algorithm
to evaluate only a limited number of candidates for the split plane. This optimization would
ensure that the algorithm performs efficiently, even for scenes containing millions of objects.

References

[1] Wald, I., Boulos, S. and Shirley, P. (2007). Ray Tracing Deformable Scenes using Dynamic
Bounding Volume Hierarchies.

[2] Gunther, J., Popov, S. and Seidel, H. (2007). Realtime Ray Tracing on GPU with BVH-
based Packet Traversal.

[3] Havran V. (2024). Nanogolem 0.97.
https://cw.fel.cvut.cz/wiki/courses/b4m39dpg/parttime/start

6



Scene T R N IT N TR N Q T F T CU T K PERF

City CPU 2.026 10.82 16.48 1 017 966 2.062 - - 0.493
City GPU 0.037 19.40 12.67 1 286 400 0.350 0.301 0.049 26.253

Sibenik CPU 4.254 15.47 13.10 1 279 989 5.446 - - 0.235
Sibenik GPU 0.108 20.85 48.95 1 286 400 0.412 0.285 0.128 10.089

Armadillo CPU 1.864 3.74 21.24 789572 1.472 - - 0.536
Armadillo GPU 0.064 8.82 22.79 1 286 400 0.385 0.307 0.078 16.492

AsianDragon CPU 3.321 3.91 21.29 787 837 2.616 - - 0.301
AsianDragon GPU 0.243 23.47 102.59 1 286 400 1.260 0.923 0.998 3.812

Table 2: Comparison of CPU and GPU performance for primary and shadow rays, measured values are
average time per query (T R [per ray, in µs]), average number of incidence operations (N IT), average number
of traversal steps per query (N TR), number of queries (N Q), full time of traversal (T F [s]), time to initialize
CUDA data (T CU), kernel execution time (T K [s]) and PERF [Mray/s].

Figure 3: Example or result images rendered with shadows.
The scenes are: Armadillo, Asian Dragon, City, and Sibenik.

7


